8.7 TAYLOR AND MACLAURIN SERIES

EXAMPLE A Represent $f(x)=\sin x$ as the sum of its Taylor series centered at $\pi / 3$.
SOLUTION Arranging our work in columns, we have

$$
\begin{array}{rlrl}
f(x) & =\sin x & f\left(\frac{\pi}{3}\right) & =\frac{\sqrt{3}}{2} \\
f^{\prime}(x)=\cos x & f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1}{2} \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}\left(\frac{\pi}{3}\right)=-\frac{1}{2}
\end{array}
$$

and this pattern repeats indefinitely. Therefore, the Taylor series at $\pi / 3$ is

$$
\begin{aligned}
f\left(\frac{\pi}{3}\right) & +\frac{f^{\prime}\left(\frac{\pi}{3}\right)}{1!}\left(x-\frac{\pi}{3}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{3}\right)}{2!}\left(x-\frac{\pi}{3}\right)^{2}+\frac{f^{\prime \prime \prime}\left(\frac{\pi}{3}\right)}{3!}\left(x-\frac{\pi}{3}\right)^{3}+\cdots \\
& =\frac{\sqrt{3}}{2}+\frac{1}{2 \cdot 1!}\left(x-\frac{\pi}{3}\right)-\frac{\sqrt{3}}{2 \cdot 2!}\left(x-\frac{\pi}{3}\right)^{2}-\frac{1}{2 \cdot 3!}\left(x-\frac{\pi}{3}\right)^{3}+\cdots
\end{aligned}
$$

The proof that this series represents $\sin x$ for all x is very similar to that in Example 4. [Just replace x by $x-\pi / 3$ in (15).] We can write the series in sigma notation if we separate the terms that contain $\sqrt{3}$:

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} \sqrt{3}}{2(2 n)!}\left(x-\frac{\pi}{3}\right)^{2 n}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2(2 n+1)!}\left(x-\frac{\pi}{3}\right)^{2 n+1}
$$

- We have obtained two different series representations for $\sin x$, the Maclaurin series in Example 4 and the Taylor series in Example A. It is best to use the Maclaurin series for values of x near 0 and the Taylor series for x near $\pi / 3$. Notice that the third Taylor polynomial T_{3} in Figure 1 is a good approximation to $\sin x$ near $\pi / 3$ but not as good near 0 . Compare it with the third Maclaurin polynomial T_{3} in Figure 2, where the opposite is true.

FIGURE I

FIGURE 2

V Play the Video
V EXAMPLE B Expand $\frac{1}{(1+x)^{2}}$ as a power series.
SOLUTION We use the binomial series with $k=-2$. The binomial coefficient is

$$
\begin{aligned}
\binom{-2}{n} & =\frac{(-2)(-3)(-4) \cdots(-2-n+1)}{n!} \\
& =\frac{(-1)^{n} 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n(n+1)}{n!}=(-1)^{n}(n+1)
\end{aligned}
$$

and so, when $|x|<1$,

$$
\frac{1}{(1+x)^{2}}=(1+x)^{-2}=\sum_{n=0}^{\infty}\binom{-2}{n} x^{n}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}=1-2 x+3 x^{2}-4 x^{3}+\cdots
$$

